Loading...
DP = MP = DM
Save Copy
Desmos Logo
Log In
Sign Up
Expression 16: "m" Subscript, 1 , Baseline equals StartFraction, 2 "B" Subscript, 2 , Baseline Over "W" , EndFraction
m
1
=
2
B
2
W
equals
=
0.5 7 7 3 5 0 2 6 9 1 9
0
.
5
7
7
3
5
0
2
6
9
1
9
16
Expression 17: "E" Subscript, 2 , Baseline tilde "m" Subscript, 1 , Baseline left parenthesis, "E" Subscript, 1 , Baseline minus "A" Subscript, 1 , Baseline , right parenthesis
E
2
~
m
1
E
1
−
A
1
17
Expression 18: "F" Subscript, 1 , Baseline equals negative "E" Subscript, 1 , Baseline
F
1
=
−
E
1
equals
=
3.8 0 3 8 4 7 5 7 7 2 9
3
.
8
0
3
8
4
7
5
7
7
2
9
18
Expression 19: "F" Subscript, 2 , Baseline equals "E" Subscript, 2 , Baseline
F
2
=
E
2
equals
=
3
3
19
Expression 20: "P" Subscript, 1 , Baseline equals StartRoot, 0 , EndRoot
P
1
=
0
equals
=
0
0
20
Expression 21: "P" Subscript, 2 , Baseline equals StartFraction, "E" Subscript, 2 , Baseline plus "F" Subscript, 2 , Baseline Over 2 , EndFraction
P
2
=
E
2
+
F
2
2
equals
=
3
3
21
Expression 22: "M" Subscript, 1 , Baseline equals StartFraction, "E" Subscript, 1 , Baseline plus "C" Subscript, 1 , Baseline Over 2 , EndFraction
M
1
=
E
1
+
C
1
2
equals
=
2.5 9 8 0 7 6 2 1 1 3 5
2
.
5
9
8
0
7
6
2
1
1
3
5
22
Expression 23: "M" Subscript, 2 , Baseline equals StartFraction, "E" Subscript, 2 , Baseline plus "C" Subscript, 2 , Baseline Over 2 , EndFraction
M
2
=
E
2
+
C
2
2
equals
=
1.5
1
.
5
23
Graphs
Graphs
Hide this folder from students.
24
Expression 25: polygon left parenthesis, "E" , "F" , right parenthesis
p
o
l
y
g
o
n
E
,
F
25
Expression 26: polygon left parenthesis, "P" , "B" , right parenthesis
p
o
l
y
g
o
n
P
,
B
26
Expression 27: polygon left parenthesis, "E" , "C" , right parenthesis
p
o
l
y
g
o
n
E
,
C
27
Expression 28: polygon left parenthesis, "D" , "M" , "P" , right parenthesis
p
o
l
y
g
o
n
D
,
M
,
P
28
Expression 29: polygon left parenthesis, "D" , "M" , "P" , right parenthesis
p
o
l
y
g
o
n
D
,
M
,
P
29
Expression 30: polygon left parenthesis, "A" , "B" , "C" , right parenthesis
p
o
l
y
g
o
n
A
,
B
,
C
30
Points
Points
Hide this folder from students.
31
43
powered by
powered by
A
B
C
D
E
F
P
M
Start black, "W" equals "A" "C" equals 18 , "H" equals "B" "D" equals StartFraction, "W" Over 6 , EndFraction StartRoot, 3 , EndRoot equals 5.1 9 6 1 5 2 4 End black
W
=
A
C
=
1
8
,
H
=
B
D
=
W
6
3
=
5
.
1
9
6
1
5
2
4
Start black, "E" "M" equals "C" "M" , "D" "P" equals "M" "P" equals "D" "M" equals 3 End black
E
M
=
C
M
,
D
P
=
M
P
=
D
M
=
3
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy