Loading...
PT = X = 1.41421356237
Save Copy
Desmos Logo
Log In
Sign Up
Expression 26: "f" left parenthesis, "E" Subscript, 1 , Baseline , right parenthesis tilde "g" left parenthesis, "E" Subscript, 1 , Baseline , right parenthesis
f
E
1
~
g
E
1
26
Expression 27: "E" Subscript, 2 , Baseline equals "g" left parenthesis, "E" Subscript, 1 , Baseline , right parenthesis
E
2
=
g
E
1
equals
=
negative 0.7 0 7 1 0 6 7 8 1 1 8 7
−
0
.
7
0
7
1
0
6
7
8
1
1
8
7
27
Expression 28: "F" Subscript, 1 , Baseline equals "O" Subscript, 1 , Baseline
F
1
=
O
1
equals
=
0
0
28
Expression 29: "F" Subscript, 2 , Baseline equals "E" Subscript, 2 , Baseline minus left parenthesis, "M" Subscript, 2 , Baseline minus "E" Subscript, 2 , Baseline , right parenthesis
F
2
=
E
2
−
M
2
−
E
2
equals
=
negative 3.3 4 6 0 6 5 2 1 4 9 5
−
3
.
3
4
6
0
6
5
2
1
4
9
5
29
Expression 30: "G" Subscript, 1 , Baseline equals negative "E" Subscript, 1 , Baseline
G
1
=
−
E
1
equals
=
negative 2.6 3 8 9 5 8 4 3 3 7 7
−
2
.
6
3
8
9
5
8
4
3
3
7
7
30
Expression 31: "G" Subscript, 2 , Baseline equals "E" Subscript, 2 , Baseline
G
2
=
E
2
equals
=
negative 0.7 0 7 1 0 6 7 8 1 1 8 7
−
0
.
7
0
7
1
0
6
7
8
1
1
8
7
31
Expression 32: "y" equals negative StartFraction, 1 Over "m" Subscript, 1 , Baseline , EndFraction left parenthesis, "x" plus "G" Subscript, 1 , Baseline , right parenthesis plus "G" Subscript, 2 , Baseline
y
=
−
1
m
1
x
+
G
1
+
G
2
32
Expression 33: "y" equals negative StartRoot, "R" squared minus "x" squared , EndRoot
y
=
−
R
2
−
x
2
33
Expression 34: negative StartFraction, 1 Over "m" Subscript, 1 , Baseline , EndFraction left parenthesis, "x" plus "G" Subscript, 1 , Baseline , right parenthesis plus "G" Subscript, 2 , Baseline equals negative StartRoot, "R" squared minus "x" squared , EndRoot
−
1
m
1
x
+
G
1
+
G
2
=
−
R
2
−
x
2
34
Expression 35: "a" equals StartFraction, 1 Over "m" squared , EndFraction plus 1
a
=
1
m
2
1
+
1
equals
=
2
2
35
Expression 36: "b" equals 2 StartFraction, 1 Over "m" squared , EndFraction "G" Subscript, 1 , Baseline minus 2 StartFraction, 1 Over "m" Subscript, 1 , Baseline , EndFraction "G" Subscript, 2 , Baseline
b
=
2
1
m
2
1
G
1
−
2
1
m
1
G
2
equals
=
negative 6.6 9 2 1 3 0 4 2 9 9 1
−
6
.
6
9
2
1
3
0
4
2
9
9
1
36
Expression 37: "c" equals StartFraction, 1 Over "m" squared , EndFraction "G" squared plus "G" squared minus 2 StartFraction, 1 Over "m" Subscript, 1 , Baseline , EndFraction "G" Subscript, 1 , Baseline "G" Subscript, 2 , Baseline minus "R" squared
c
=
1
m
2
1
G
2
1
+
G
2
2
−
2
1
m
1
G
1
G
2
−
R
2
equals
=
3.7 3 2 0 5 0 8 0 7 5 7
3
.
7
3
2
0
5
0
8
0
7
5
7
37
Expression 38: "a" "x" squared plus "b" "x" plus "c" equals 0
a
x
2
+
b
x
+
c
=
0
38
Expression 39: "T" Subscript, 1 , Baseline equals StartFraction, negative "b" minus StartRoot, "b" squared minus 4 "a" "c" , EndRoot Over 2 "a" , EndFraction
T
1
=
−
b
−
b
2
−
4
a
c
2
a
equals
=
0.7 0 7 1 0 6 7 8 1 1 8 7
0
.
7
0
7
1
0
6
7
8
1
1
8
7
39
Expression 40: "T" Subscript, 2 , Baseline equals negative StartRoot, "R" squared minus "T" squared , EndRoot
T
2
=
−
R
2
−
T
2
1
equals
=
negative 2.6 3 8 9 5 8 4 3 3 7 7
−
2
.
6
3
8
9
5
8
4
3
3
7
7
40
Expression 41: "P" Subscript, 1 , Baseline equals negative "T" Subscript, 1 , Baseline
P
1
=
−
T
1
equals
=
negative 0.7 0 7 1 0 6 7 8 1 1 8 7
−
0
.
7
0
7
1
0
6
7
8
1
1
8
7
41
Expression 42: "P" Subscript, 2 , Baseline equals "T" Subscript, 2 , Baseline
P
2
=
T
2
equals
=
negative 2.6 3 8 9 5 8 4 3 3 7 7
−
2
.
6
3
8
9
5
8
4
3
3
7
7
42
Graphs
Graphs
Hide this folder from students.
43
Expression 44: polygon left parenthesis, "E" , "F" , "G" , "M" , right parenthesis
p
o
l
y
g
o
n
E
,
F
,
G
,
M
44
Expression 45: polygon left parenthesis, "A" , "B" , "C" , "D" , right parenthesis
p
o
l
y
g
o
n
A
,
B
,
C
,
D
45
Expression 46: polygon left parenthesis, "E" , "F" , "G" , "M" , right parenthesis
p
o
l
y
g
o
n
E
,
F
,
G
,
M
46
Expression 47: polygon left parenthesis, "A" , "B" , "C" , "D" , right parenthesis
p
o
l
y
g
o
n
A
,
B
,
C
,
D
47
Expression 48: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis
R
c
o
s
t
,
R
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 360
3
6
0
48
Expression 49: polygon left parenthesis, "M" , "O" , right parenthesis
p
o
l
y
g
o
n
M
,
O
49
Expression 50: polygon left parenthesis, "P" , "T" , right parenthesis
p
o
l
y
g
o
n
P
,
T
50
Points
Points
Hide this folder from students.
51
66
powered by
powered by
O
P
T
A
B
C
D
E
F
G
M
X
1
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy