Loading...
AB / BC = ?
Save Copy
Desmos Logo
Log In
Sign Up
Expression 20: "R" equals StartAbsoluteValue, 10 , EndAbsoluteValue
R
=
1
0
equals
=
10
1
0
20
Expression 21: StartRoot, "R" squared minus "B" squared , EndRoot tilde "B" Subscript, 2 , Baseline
R
2
−
B
2
1
~
B
2
21
Expression 22: "B" Subscript, 2 , Baseline equals "A" Subscript, 2 , Baseline
B
2
=
A
2
equals
=
7.8 5 3 9 8 1 6 3 3 9 7
7
.
8
5
3
9
8
1
6
3
3
9
7
22
Expression 23: "C" Subscript, 1 , Baseline equals "R"
C
1
=
R
equals
=
10
1
0
23
Expression 24: "C" Subscript, 2 , Baseline equals "B" Subscript, 2 , Baseline
C
2
=
B
2
equals
=
7.8 5 3 9 8 1 6 3 3 9 7
7
.
8
5
3
9
8
1
6
3
3
9
7
24
Expression 25: "D" Subscript, 1 , Baseline equals "R"
D
1
=
R
equals
=
10
1
0
25
Expression 26: "D" Subscript, 2 , Baseline equals "O" Subscript, 2 , Baseline
D
2
=
O
2
equals
=
0
0
26
Expression 27: "P" Subscript, 1 , Baseline equals "O" Subscript, 1 , Baseline
P
1
=
O
1
equals
=
0
0
27
Expression 28: "P" Subscript, 2 , Baseline equals "R"
P
2
=
R
equals
=
10
1
0
28
Expression 29: "y" equals "m" Subscript, 1 , Baseline "x"
y
=
m
1
x
29
Graphs
Graphs
Hide this folder from students.
30
Expression 31: polygon left parenthesis, "A" , "B" , "P" , right parenthesis
p
o
l
y
g
o
n
A
,
B
,
P
31
Expression 32: polygon left parenthesis, "A" , "B" , "O" , right parenthesis
p
o
l
y
g
o
n
A
,
B
,
O
32
Expression 33: polygon left parenthesis, "O" , "B" , "D" , right parenthesis
p
o
l
y
g
o
n
O
,
B
,
D
33
Expression 34: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis
R
c
o
s
t
,
R
s
i
n
t
domain t Minimum: 90 minus "B" Subscript, "O" "P" , Baseline
9
0
−
B
O
P
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 90
9
0
34
Expression 35: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis
R
c
o
s
t
,
R
s
i
n
t
domain t Minimum: 0
0
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 90 minus "B" Subscript, "O" "P" , Baseline
9
0
−
B
O
P
35
Expression 36: polygon left parenthesis, "A" , "P" , right parenthesis
p
o
l
y
g
o
n
A
,
P
36
Expression 37: polygon left parenthesis, "O" , "B" , right parenthesis
p
o
l
y
g
o
n
O
,
B
37
Expression 38: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis
R
c
o
s
t
,
R
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 90
9
0
38
Expression 39: polygon left parenthesis, "A" , "C" , "D" , "O" , right parenthesis
p
o
l
y
g
o
n
A
,
C
,
D
,
O
39
Points
Points
Hide this folder from students.
40
48
powered by
powered by
O
P
A
B
C
D
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy