Expression 8: eta equals 100 StartFraction, "n" times "X" minus "L" Subscript, "n" "o" "r" "m" , Baseline Over "n" times "X" , EndFraction equals 76.2 5 1 0 8 7 2 0 1 2η=100n·X−Lnormn·X
equals=
76.2 5 1 0 8 7 2 0 1 276.2510872012
8
η is the efficiency (%)
9
Expression 10:
10
Expression 11: eta Subscript, "w" "o" "r" "s" "t" , Baseline equals 100 left parenthesis, 1 minus StartFraction, 1 Over left parenthesis, "c" plus 1 , right parenthesis squared , EndFraction , right parenthesis equals 75ηworst=1001−1c+12
equals=
7575
11
As we saw, we have the worst possible scenario if p->0 and n->∞. This is your "floor": you can't do worse than this using c observers.