Loading...
BC in Terms of 𝛼
Save Copy
Desmos Logo
Log In
Sign Up
Expression 14: "D" Subscript, 1 , Baseline equals StartRoot, 1 , EndRoot
D
1
=
1
equals
=
1
1
14
Expression 15: "D" Subscript, 2 , Baseline equals "O" Subscript, 2 , Baseline
D
2
=
O
2
equals
=
0
0
15
Expression 16: "E" Subscript, 1 , Baseline equals "C" Subscript, 1 , Baseline
E
1
=
C
1
equals
=
0.5 1 0 9 9 3 0 6 5 5 0 4
0
.
5
1
0
9
9
3
0
6
5
5
0
4
16
Expression 17: "E" Subscript, 2 , Baseline equals "O" Subscript, 2 , Baseline
E
2
=
O
2
equals
=
0
0
17
Expression 18: "C" Subscript, 1 , Baseline equals cosine "C" Subscript, "O" "D" , Baseline
C
1
=
c
o
s
C
O
D
equals
=
0.5 1 0 9 9 3 0 6 5 5 0 4
0
.
5
1
0
9
9
3
0
6
5
5
0
4
18
Expression 19: "C" Subscript, 2 , Baseline equals sine "C" Subscript, "O" "D" , Baseline
C
2
=
s
i
n
C
O
D
equals
=
0.8 5 9 5 8 4 8 3 4 0 9 6
0
.
8
5
9
5
8
4
8
3
4
0
9
6
19
Graphs
Graphs
Hide this folder from students.
20
Expression 21: "y" less than 25
y
<
2
5
21
Expression 22: left parenthesis, cos "t" , sin "t" , right parenthesis
c
o
s
t
,
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 180
1
8
0
22
Expression 23: left parenthesis, "t" .1cos 135 , .1sin 135 , right parenthesis
t
.
1
c
o
s
1
3
5
,
.
1
s
i
n
1
3
5
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
1
1
domain t Maximum:
23
Expression 24: left parenthesis, .1cos 135 , "t" .1sin 135 , right parenthesis
.
1
c
o
s
1
3
5
,
t
.
1
s
i
n
1
3
5
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
1
1
domain t Maximum:
24
Expression 25: polygon left parenthesis, "A" , "B" , "O" , "B" , "C" , "E" , "D" , right parenthesis
p
o
l
y
g
o
n
A
,
B
,
O
,
B
,
C
,
E
,
D
25
Expression 26: left parenthesis, "E" Subscript, 1 , Baseline plus "t" .1cos 45 , .1sin 45 , right parenthesis
E
1
+
t
.
1
c
o
s
4
5
,
.
1
s
i
n
4
5
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
1
1
domain t Maximum:
26
Expression 27: left parenthesis, "E" Subscript, 1 , Baseline plus .1cos 45 , "t" .1sin 45 , right parenthesis
E
1
+
.
1
c
o
s
4
5
,
t
.
1
s
i
n
4
5
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
1
1
domain t Maximum:
27
Points
Points
Hide this folder from students.
28
41
powered by
powered by
O
A
B
C
E
D
Start black, "B" Subscript, "C" , Baseline equals StartFraction, cos 2 alpha Over cos alpha , EndFraction End black
B
C
=
c
o
s
2
α
c
o
s
α
Start black, cos 2 alpha End black
c
o
s
2
α
Start black, alpha End black
α
1
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy