Loading...
Prove that ab = cd
Save Copy
Desmos Logo
Log In
Sign Up
Expression 19: "L" Subscript, 1 , Baseline equals negative "R"
L
1
=
−
R
equals
=
negative 6
−
6
19
Expression 20: "L" Subscript, 2 , Baseline equals "O" Subscript, 2 , Baseline
L
2
=
O
2
equals
=
0
0
20
Expression 21: "M" Subscript, 1 , Baseline equals "O" Subscript, 1 , Baseline
M
1
=
O
1
equals
=
0
0
21
Expression 22: "M" Subscript, 2 , Baseline equals negative "R"
M
2
=
−
R
equals
=
negative 6
−
6
22
Expression 23: "N" Subscript, 1 , Baseline equals "R"
N
1
=
R
equals
=
6
6
23
Expression 24: "N" Subscript, 2 , Baseline equals "O" Subscript, 2 , Baseline
N
2
=
O
2
equals
=
0
0
24
Expression 25: "O" Subscript, 1 , Baseline equals StartRoot, 0 , EndRoot
O
1
=
0
equals
=
0
0
25
Expression 26: "O" Subscript, 2 , Baseline equals StartRoot, 0 , EndRoot
O
2
=
0
equals
=
0
0
26
Expression 27: "P" Subscript, 1 , Baseline equals "T" Subscript, 1 , Baseline
P
1
=
T
1
equals
=
negative 2.7 4 8 5 3 0 4 3 5 4 3
−
2
.
7
4
8
5
3
0
4
3
5
4
3
27
Expression 28: "P" Subscript, 2 , Baseline equals "O" Subscript, 2 , Baseline
P
2
=
O
2
equals
=
0
0
28
Expression 29: "T" Subscript, 1 , Baseline equals "M" Subscript, 1 , Baseline plus "R" Subscript, "M" "a" "j" "o" "r" , Baseline cosine "B" Subscript, "M" "C" , Baseline
T
1
=
M
1
+
R
M
a
j
o
r
c
o
s
B
M
C
equals
=
negative 2.7 4 8 5 3 0 4 3 5 4 3
−
2
.
7
4
8
5
3
0
4
3
5
4
3
29
Expression 30: "T" Subscript, 2 , Baseline equals "M" Subscript, 2 , Baseline plus "R" Subscript, "M" "a" "j" "o" "r" , Baseline sine "B" Subscript, "M" "C" , Baseline
T
2
=
M
2
+
R
M
a
j
o
r
s
i
n
B
M
C
equals
=
2.0 2 7 8 0 0 4 7 3 7
2
.
0
2
7
8
0
0
4
7
3
7
30
Graphs
Graphs
Hide this folder from students.
31
Expression 32: polygon left parenthesis, "E" , "F" , right parenthesis
p
o
l
y
g
o
n
E
,
F
32
Expression 33: polygon left parenthesis, "P" , "T" , right parenthesis
p
o
l
y
g
o
n
P
,
T
33
Expression 34: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis
R
c
o
s
t
,
R
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 360
3
6
0
34
Expression 35: polygon left parenthesis, "L" , "N" , "M" , right parenthesis
p
o
l
y
g
o
n
L
,
N
,
M
35
Expression 36: left parenthesis, "M" Subscript, 1 , Baseline plus "R" Subscript, "M" "a" "j" "o" "r" , Baseline cos "t" , "M" Subscript, 2 , Baseline plus "R" Subscript, "M" "a" "j" "o" "r" , Baseline sin "t" , right parenthesis
M
1
+
R
M
a
j
o
r
c
o
s
t
,
M
2
+
R
M
a
j
o
r
s
i
n
t
domain t Minimum: 45
4
5
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 135
1
3
5
36
Points
Points
Hide this folder from students.
37
50
powered by
powered by
L
N
T
P
E
F
M
d
c
a
b
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy