Since smaller loops correspond to larger z values, those loops collapse down to the location of a maximum. We'll see how to find the exact coordinates in the next folder.
9
Equations for the critical points
학생에게 이 폴더를 숨깁니다.
10
The critical points should be the solutions of the following equations. Turn them on to see where those curves intersect.
11
수식 12: negative 2 "x" minus 3 "x" squared minus 2 "y" plus 2 "x" "y" equals 0−2x−3x2−2y+2xy=0
12
수식 13: negative 2 minus 2 "x" plus "x" squared plus 2 "y" plus 3 "y" squared equals 0−2−2x+x2+2y+3y2=0
13
수식 14: "m" equals "f" left parenthesis, negative 0.7 6 5 , negative 0.0 6 4 , right parenthesism=f−0.765,−0.064
14
수식 15: "n" equals "f" left parenthesis, 0.4 4 5 , negative 1.3 3 8 , right parenthesisn=f0.445,−1.338
15
수식 16: left parenthesis, negative 0.7 6 5 , negative 0.0 6 4 , right parenthesis−0.765,−0.064
16
수식 17: left parenthesis, 0.4 4 5 , negative 1.3 3 8 , right parenthesis0.445,−1.338