Since smaller loops correspond to larger z values, those loops collapse down to the location of a maximum. We'll see how to find the exact coordinates in the next folder.
9
Equations for the critical points
對學生隱藏此資料夾。
10
The critical points should be the solutions of the following equations. Turn them on to see where those curves intersect.
11
運算式 12: negative 2 "x" minus 3 "x" squared minus 2 "y" plus 2 "x" "y" equals 0−2x−3x2−2y+2xy=0
12
運算式 13: negative 2 minus 2 "x" plus "x" squared plus 2 "y" plus 3 "y" squared equals 0−2−2x+x2+2y+3y2=0
13
運算式 14: "m" equals "f" left parenthesis, negative 0.7 6 5 , negative 0.0 6 4 , right parenthesism=f−0.765,−0.064
equals=
1.8 5 8 9 3 1 5 8 11.858931581
14
運算式 15: "n" equals "f" left parenthesis, 0.4 4 5 , negative 1.3 3 8 , right parenthesisn=f0.445,−1.338
equals=
4.7 1 0 6 1 3 9 5 34.710613953
15
Min = ${m} left parenthesis, negative 0.7 6 5 , negative 0.0 6 4 , right parenthesis−0.765,−0.064
標籤:
16
Max = ${n} left parenthesis, 0.4 4 5 , negative 1.3 3 8 , right parenthesis0.445,−1.338