Uttryck 13: "K" equals left bracket, 0...1 7 , right bracketK=0...17
equals=
00
11
22
33
44
55
66
77
88
99
1010
1111
1212
1313
1414
Lista med 18 element
13
Uttryck 14: "f" left parenthesis, "x" , right parenthesis equals hyperbolic secant left parenthesis, "x" , right parenthesis left parenthesis, 1 quarter plus 1 half sin left parenthesis, 3 pi tanh left parenthesis, StartFraction, "x" Over 4 , EndFraction , right parenthesis , right parenthesis , right parenthesisfx=sechx14+12sin3πtanhx4
14
Uttryck 15: "C" Subscript, "T" , Baseline equals StartFraction, left parenthesis, Start integral from negative infinity to infinity , end integral, StartNestedFraction, "T" left parenthesis, "K" , "x" , right parenthesis "f" left parenthesis, "x" , right parenthesis NestedOver left parenthesis, 1 plus "x" squared , right parenthesis , EndNestedFraction "d" "x" , right parenthesis Over left parenthesis, Start integral from negative infinity to infinity , end integral, StartNestedFraction, "T" left parenthesis, "K" , "x" , right parenthesis squared NestedOver left parenthesis, 1 plus "x" squared , right parenthesis , EndNestedFraction "d" "x" , right parenthesis , EndFractionCT=∫∞−∞TK,xfx1+x2dx∫∞−∞TK,x21+x2dx
Uttryck 16: "C" Subscript, "U" , Baseline equals StartFraction, left parenthesis, Start integral from negative infinity to infinity , end integral, StartNestedFraction, "U" left parenthesis, "K" , "x" , right parenthesis "f" left parenthesis, "x" , right parenthesis NestedOver left parenthesis, 1 plus "x" squared , right parenthesis , EndNestedFraction "d" "x" , right parenthesis Over left parenthesis, Start integral from negative infinity to infinity , end integral, StartNestedFraction, "U" left parenthesis, "K" , "x" , right parenthesis squared NestedOver left parenthesis, 1 plus "x" squared , right parenthesis , EndNestedFraction "d" "x" , right parenthesis , EndFractionCU=∫∞−∞UK,xfx1+x2dx∫∞−∞UK,x21+x2dx
Uttryck 17: Start sum from "n" equals 0 to "N" , end sum, left parenthesis, "C" Subscript, "T" , Baseline left bracket, "n" plus 1 , right bracket "T" left parenthesis, "n" , "x" , right parenthesis , right parenthesisN∑n=0CTn+1Tn,x
17
Uttryck 18: Start sum from "n" equals 0 to "N" , end sum, left parenthesis, "C" Subscript, "U" , Baseline left bracket, "n" plus 1 , right bracket "U" left parenthesis, "n" , "x" , right parenthesis , right parenthesisN∑n=0CUn+1Un,x
18
You can tweak the weight function in the numerator and then apply the reciprocal of the modified version to change asymptotic behavior or tradeoff error in different intervals (so long as it doesn't break convergence)
19
Uttryck 20: "C" Subscript, "T" 2 , Baseline equals StartFraction, left parenthesis, Start integral from negative infinity to infinity , end integral, StartNestedFraction, "T" left parenthesis, "K" , "x" , right parenthesis "f" left parenthesis, "x" , right parenthesis NestedOver left parenthesis, 1 plus "x" squared , right parenthesis Superscript, left parenthesis, 1 plus "a" , right parenthesis , Baseline , EndNestedFraction "d" "x" , right parenthesis Over left parenthesis, Start integral from negative infinity to infinity , end integral, StartNestedFraction, "T" left parenthesis, "K" , "x" , right parenthesis squared NestedOver left parenthesis, 1 plus "x" squared , right parenthesis , EndNestedFraction "d" "x" , right parenthesis , EndFractionCT2=∫∞−∞TK,xfx1+x21+adx∫∞−∞TK,x21+x2dx
Uttryck 21: "C" Subscript, "U" 2 , Baseline equals StartFraction, left parenthesis, Start integral from negative infinity to infinity , end integral, StartNestedFraction, "U" left parenthesis, "K" , "x" , right parenthesis "f" left parenthesis, "x" , right parenthesis NestedOver left parenthesis, 1 plus "x" squared , right parenthesis Superscript, left parenthesis, 1 plus "a" , right parenthesis , Baseline , EndNestedFraction "d" "x" , right parenthesis Over left parenthesis, Start integral from negative infinity to infinity , end integral, StartNestedFraction, "U" left parenthesis, "K" , "x" , right parenthesis squared NestedOver left parenthesis, 1 plus "x" squared , right parenthesis , EndNestedFraction "d" "x" , right parenthesis , EndFractionCU2=∫∞−∞UK,xfx1+x21+adx∫∞−∞UK,x21+x2dx
Uttryck 23: Start sum from "n" equals 0 to "N" , end sum, left parenthesis, "C" Subscript, "T" 2 , Baseline left bracket, "n" plus 1 , right bracket "T" left parenthesis, "n" , "x" , right parenthesis , right parenthesis left parenthesis, 1 plus "x" squared , right parenthesis Superscript, left parenthesis, "a" , right parenthesis , BaselineN∑n=0CT2n+1Tn,x1+x2a
23
Uttryck 24: Start sum from "n" equals 0 to "N" , end sum, left parenthesis, "C" Subscript, "U" 2 , Baseline left bracket, "n" plus 1 , right bracket "U" left parenthesis, "n" , "x" , right parenthesis , right parenthesis left parenthesis, 1 plus "x" squared , right parenthesis Superscript, left parenthesis, "a" , right parenthesis , BaselineN∑n=0CU2n+1Un,x1+x2a
24
Coefficients can also using a truncated fourier transform of f(tan(pi/2*x)) on (-1,1)
25
26
driven av
driven av
"x"x
"y"y
"a" squareda2
"a" Superscript, "b" , Baselineab
77
88
99
over÷
funktioner
((
))
less than<
greater than>
44
55
66
times×
| "a" ||a|
,,
less than or equal to≤
greater than or equal to≥
11
22
33
negative−
A B C
StartRoot, , EndRoot
piπ
00
..
equals=
positive+
eller
för att spara dina grafer!
Skapa en ny graf
Exempel
Linjer: Linjära funktioner
exempel
Linjer: Enpunktsformeln
exempel
Linjer: Tvåpunktsformeln
exempel
Parabler: Standardform
exempel
Parabler: Vertexform
exempel
Parabler: Standardform och tangens
exempel
Trigonometri: Våglängd och amplitud
exempel
Trigonometri: Fas
exempel
Trigonometri: Interferens
exempel
Trigonometri: Enhetscirkeln
exempel
Kägelsnitt: Cirkel
exempel
Kägelsnitt: Parabel och fokus
exempel
Kägelsnitt: Ellips med fokus
exempel
Kägelsnitt: Hyperbel
exempel
Polära ekvationer: Ros
exempel
Polära ekvationer: Logaritmisk spiral
exempel
Polära ekvationer: Limacon
exempel
Polära ekvationer: Kägelsnitt
exempel
Parameterform: Introduktion
exempel
Parameterform: Cykloid
exempel
Transformation: Avbildning av en funktion
exempel
Transformation: Förändra skalan på en funktion
exempel
Transformation: Invers av en funktion
exempel
Statistik: Linjär regression
exempel
Statistik: Anscombs kvartett
exempel
Statistik: Polynom av 4:e grad
exempel
Listor: Sinuskurvor
exempel
Listor: Stickandet av kurvor
exempel
Listor: Rita en graf från en lista med punkter
exempel
Infinitesimalkalkyl: Derivata
exempel
Infinitesimalkalkyl: Sekantlinje
exempel
Infinitesimalkalkyl: Tangentlinje
exempel
Infinitesimalkalkyl: Taylorutveckling av sin(x)
exempel
Infinitesimalkalkyl: Integraler
exempel
Infinitesimalkalkyl: Integraler med justerbara gränser