İfade 13: "K" equals left bracket, 0...1 7 , right bracketK=0...17
equals=
00
11
22
33
44
55
66
77
88
99
1010
1111
1212
1313
1414
eleman listesi 18
13
İfade 14: "f" left parenthesis, "x" , right parenthesis equals hyperbolic secant left parenthesis, "x" , right parenthesis left parenthesis, 1 quarter plus 1 half sin left parenthesis, 3 pi tanh left parenthesis, StartFraction, "x" Over 4 , EndFraction , right parenthesis , right parenthesis , right parenthesisfx=sechx14+12sin3πtanhx4
14
İfade 15: "C" Subscript, "T" , Baseline equals StartFraction, left parenthesis, Start integral from negative infinity to infinity , end integral, StartNestedFraction, "T" left parenthesis, "K" , "x" , right parenthesis "f" left parenthesis, "x" , right parenthesis NestedOver left parenthesis, 1 plus "x" squared , right parenthesis , EndNestedFraction "d" "x" , right parenthesis Over left parenthesis, Start integral from negative infinity to infinity , end integral, StartNestedFraction, "T" left parenthesis, "K" , "x" , right parenthesis squared NestedOver left parenthesis, 1 plus "x" squared , right parenthesis , EndNestedFraction "d" "x" , right parenthesis , EndFractionCT=∫∞−∞TK,xfx1+x2dx∫∞−∞TK,x21+x2dx
İfade 16: "C" Subscript, "U" , Baseline equals StartFraction, left parenthesis, Start integral from negative infinity to infinity , end integral, StartNestedFraction, "U" left parenthesis, "K" , "x" , right parenthesis "f" left parenthesis, "x" , right parenthesis NestedOver left parenthesis, 1 plus "x" squared , right parenthesis , EndNestedFraction "d" "x" , right parenthesis Over left parenthesis, Start integral from negative infinity to infinity , end integral, StartNestedFraction, "U" left parenthesis, "K" , "x" , right parenthesis squared NestedOver left parenthesis, 1 plus "x" squared , right parenthesis , EndNestedFraction "d" "x" , right parenthesis , EndFractionCU=∫∞−∞UK,xfx1+x2dx∫∞−∞UK,x21+x2dx
İfade 17: Start sum from "n" equals 0 to "N" , end sum, left parenthesis, "C" Subscript, "T" , Baseline left bracket, "n" plus 1 , right bracket "T" left parenthesis, "n" , "x" , right parenthesis , right parenthesisN∑n=0CTn+1Tn,x
17
İfade 18: Start sum from "n" equals 0 to "N" , end sum, left parenthesis, "C" Subscript, "U" , Baseline left bracket, "n" plus 1 , right bracket "U" left parenthesis, "n" , "x" , right parenthesis , right parenthesisN∑n=0CUn+1Un,x
18
You can tweak the weight function in the numerator and then apply the reciprocal of the modified version to change asymptotic behavior or tradeoff error in different intervals (so long as it doesn't break convergence)
19
İfade 20: "C" Subscript, "T" 2 , Baseline equals StartFraction, left parenthesis, Start integral from negative infinity to infinity , end integral, StartNestedFraction, "T" left parenthesis, "K" , "x" , right parenthesis "f" left parenthesis, "x" , right parenthesis NestedOver left parenthesis, 1 plus "x" squared , right parenthesis Superscript, left parenthesis, 1 plus "a" , right parenthesis , Baseline , EndNestedFraction "d" "x" , right parenthesis Over left parenthesis, Start integral from negative infinity to infinity , end integral, StartNestedFraction, "T" left parenthesis, "K" , "x" , right parenthesis squared NestedOver left parenthesis, 1 plus "x" squared , right parenthesis , EndNestedFraction "d" "x" , right parenthesis , EndFractionCT2=∫∞−∞TK,xfx1+x21+adx∫∞−∞TK,x21+x2dx
İfade 21: "C" Subscript, "U" 2 , Baseline equals StartFraction, left parenthesis, Start integral from negative infinity to infinity , end integral, StartNestedFraction, "U" left parenthesis, "K" , "x" , right parenthesis "f" left parenthesis, "x" , right parenthesis NestedOver left parenthesis, 1 plus "x" squared , right parenthesis Superscript, left parenthesis, 1 plus "a" , right parenthesis , Baseline , EndNestedFraction "d" "x" , right parenthesis Over left parenthesis, Start integral from negative infinity to infinity , end integral, StartNestedFraction, "U" left parenthesis, "K" , "x" , right parenthesis squared NestedOver left parenthesis, 1 plus "x" squared , right parenthesis , EndNestedFraction "d" "x" , right parenthesis , EndFractionCU2=∫∞−∞UK,xfx1+x21+adx∫∞−∞UK,x21+x2dx
İfade 23: Start sum from "n" equals 0 to "N" , end sum, left parenthesis, "C" Subscript, "T" 2 , Baseline left bracket, "n" plus 1 , right bracket "T" left parenthesis, "n" , "x" , right parenthesis , right parenthesis left parenthesis, 1 plus "x" squared , right parenthesis Superscript, left parenthesis, "a" , right parenthesis , BaselineN∑n=0CT2n+1Tn,x1+x2a
23
İfade 24: Start sum from "n" equals 0 to "N" , end sum, left parenthesis, "C" Subscript, "U" 2 , Baseline left bracket, "n" plus 1 , right bracket "U" left parenthesis, "n" , "x" , right parenthesis , right parenthesis left parenthesis, 1 plus "x" squared , right parenthesis Superscript, left parenthesis, "a" , right parenthesis , BaselineN∑n=0CU2n+1Un,x1+x2a
24
Coefficients can also using a truncated fourier transform of f(tan(pi/2*x)) on (-1,1)
25
26
sağlayıcı
sağlayıcı
"x"x
"y"y
"a" squareda2
"a" Superscript, "b" , Baselineab
77
88
99
over÷
özellikler
((
))
less than<
greater than>
44
55
66
times×
| "a" ||a|
,,
less than or equal to≤
greater than or equal to≥
11
22
33
negative−
A B C
StartRoot, , EndRoot
piπ
00
..
equals=
positive+
veya
grafiklerini kaydetmek için!
Yeni Boş Grafik
Örnekler
Doğrular: Eğimin ve Y-Eksenini Kesen Noktanın Bilindiği Durum
örnek
Doğrular: Bir Noktası ve Eğiminin Bilindiği Durum
örnek
Doğrular: İki Noktasının Bilindiği Durum
örnek
Paraboller: Standart Biçim
örnek
Paraboller: Tepe Noktası Biçimi
örnek
Paraboller: Standart Biçim + Tanjant
örnek
Trigonometri: Periyot ve Genlik
örnek
Trigonometri: Faz
örnek
Trigonometri: Dalga Girişimi
örnek
Trigonometri: Birim Çember
örnek
Konikler: Çember
örnek
Konikler: Parabol ve Odak Noktası
örnek
Konikler: Elips ve Odak Noktaları
örnek
Konikler: Hiperbol
örnek
Kutupsal: Gül
örnek
Kutupsal: Logaritmik Sarmal
örnek
Kutupsal: Limaçon
örnek
Kutupsal: Konik Kesitler
örnek
Parametrik: Giriş
örnek
Parametrik: Sikloit
örnek
Dönüşümler: Fonksiyonu Öteleme
örnek
Dönüşümler: Fonksiyonu Ölçekleme
örnek
Dönüşümler: Fonksiyonun Tersi
örnek
İstatistik: Doğrusal (Lineer) Regresyon
örnek
Anscombe Dörtlüsü
örnek
İstatistik: 4. Dereceden Polinom
örnek
Listeler: Sinüs Eğri Ailesi
örnek
Listeler: Doğrulardan Eğri Oluşturma
örnek
Listeler: Bir Listedeki Noktaları Çizmek
örnek
Kalkülüs: Türevler
örnek
Kalkülüs: Sekant Doğrusu
örnek
Kalkülüs: Tanjant Doğrusu
örnek
Kalkülüs: sin(x)'in Taylor Açılımı
örnek
Kalkülüs: İntegraller
örnek
Kalkülüs: Sınır Değerleri Değiştirilebilir İntegral