Loading...
Composing Trig Functions and Inverse Trig Functions DRAFT
Save Copy
Desmos Logo
Log In
Sign Up
Hidden Label: "P" Subscript, 2 , Baseline equals left parenthesis, 2 , "f" Subscript, 1 , Baseline left parenthesis, "P" Subscript, 1 , Baseline . "y" , right parenthesis , right parenthesis
P
2
=
2
,
f
1
P
1
.
y
Label
equals
=
left parenthesis, 2 , negative 0.8 6 6 0 2 5 4 , right parenthesis
2
,
−
0
.
8
6
6
0
2
5
4
9
Hidden Label: "P" Subscript, 3 , Baseline equals left parenthesis, 3 , "f" Subscript, 2 , Baseline left parenthesis, "P" Subscript, 2 , Baseline . "y" , right parenthesis , right parenthesis
P
3
=
3
,
f
2
P
2
.
y
Label
equals
=
left parenthesis, 3 , negative 1.0 4 7 1 9 7 5 5 , right parenthesis
3
,
−
1
.
0
4
7
1
9
7
5
5
10
Label: "P" Subscript, 2 , Baseline left brace, "t" Subscript, 0 , Baseline greater than or equal to 1 , right brace
P
2
t
0
≥
1
Label:
undefined
11
Label: "P" Subscript, 3 , Baseline left brace, "t" Subscript, 0 , Baseline greater than or equal to 2 , right brace
P
3
t
0
≥
2
Label:
undefined
12
Expression 13: "C" Subscript, 1 , Baseline left parenthesis, "t" , right parenthesis equals "P" Subscript, 1 , Baseline plus left parenthesis, "P" Subscript, 2 , Baseline minus "P" Subscript, 1 , Baseline , right parenthesis "t"
C
1
t
=
P
1
+
P
2
−
P
1
t
13
Expression 14: "C" Subscript, 2 , Baseline left parenthesis, "t" , right parenthesis equals "P" Subscript, 2 , Baseline plus left parenthesis, "P" Subscript, 3 , Baseline minus "P" Subscript, 2 , Baseline , right parenthesis "t"
C
2
t
=
P
2
+
P
3
−
P
2
t
14
Expression 15: "C" Subscript, 1 , Baseline left parenthesis, "t" , right parenthesis
C
1
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: min left parenthesis, 1 , "t" Subscript, 0 , Baseline , right parenthesis
m
i
n
1
,
t
0
15
Expression 16: "C" Subscript, 2 , Baseline left parenthesis, "t" , right parenthesis
C
2
t
domain t Minimum: min left parenthesis, 1 , "t" Subscript, 0 , Baseline , right parenthesis minus 1
m
i
n
1
,
t
0
−
1
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: "t" Subscript, 0 , Baseline minus 1
t
0
−
1
16
Expression 17: sine left parenthesis, arcsin left parenthesis, "a" , right parenthesis , right parenthesis
s
i
n
a
r
c
s
i
n
a
undefined
17
@maalmeida85, 2023-01-05
@maalmeida85, 2023-01-05
18
19
powered by
powered by
left parenthesis, 1 , StartFraction, 5 pi Over 3 , EndFraction , right parenthesis
1
,
5
π
3
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy