Result of algorithm. Plus approximation with Newton's Method and Halley's Method.
9
Expression 10: "n" Subscript, "r" "e" "s" "u" "l" "t" , Baseline equals left parenthesis, mod left parenthesis, "n" Subscript, "l" "o" "n" "g" , Baseline , 1 , right parenthesis plus 1 , right parenthesis times 2 Superscript, left parenthesis, floor left parenthesis, "n" Subscript, "l" "o" "n" "g" , Baseline , right parenthesis minus 127 , right parenthesis , Baselinenresult=modnlong,1+1·2floornlong−127
10
Expression 11: "n" Subscript, "r" "s" "l" "t" "n" , Baseline equals "n" Subscript, "r" "e" "s" "u" "l" "t" , Baseline times left parenthesis, 1.5 minus left parenthesis, StartFraction, "x" Over 2 , EndFraction times "n" squared , right parenthesis , right parenthesisnrsltn=nresult·1.5−x2·n2result
11
Expression 12: "n" Subscript, "r" "s" "l" "t" "h" , Baseline equals StartFraction, 3 "n" to the negative 2nd power plus "x" Over "n" to the negative 1st power left parenthesis, "n" to the negative 2nd power plus 3 "x" , right parenthesis , EndFractionnrslth=3n−2result+xn−1resultn−2result+3x
12
Expression 13: "y" equals StartRoot, "x" , EndRoot to the negative 1st power left brace, "x" greater than 0 , right bracey=x−1x>0
13
Error measurement
14
Expression 15: "n" Subscript, "r" "e" "s" "u" "l" "t" , Baseline minus StartRoot, "x" , EndRoot to the negative 1st powernresult−x−1
15
Expression 16: "n" Subscript, "r" "s" "l" "t" "n" , Baseline minus StartRoot, "x" , EndRoot to the negative 1st powernrsltn−x−1
16
Expression 17: "n" Subscript, "r" "s" "l" "t" "h" , Baseline minus StartRoot, "x" , EndRoot to the negative 1st powernrslth−x−1