Loading...
Ratio of X / Y = 1 / 1
Save Copy
Desmos Logo
Log In
Sign Up
Expression 16: "A" Subscript, 2 , Baseline equals "O" Subscript, 2 , Baseline
A
2
=
O
2
equals
=
0
0
16
Expression 17: "B" Subscript, 1 , Baseline equals "R"
B
1
=
R
equals
=
9
9
17
Expression 18: "B" Subscript, 2 , Baseline equals "O" Subscript, 2 , Baseline
B
2
=
O
2
equals
=
0
0
18
Expression 19: "C" Subscript, 1 , Baseline equals "R" cosine "B" Subscript, "O" "C" , Baseline
C
1
=
R
c
o
s
B
O
C
equals
=
6.0 2 9 1 7 6 1 2 8 9
6
.
0
2
9
1
7
6
1
2
8
9
19
Expression 20: "C" Subscript, 2 , Baseline equals "R" sine "B" Subscript, "O" "C" , Baseline
C
2
=
R
s
i
n
B
O
C
equals
=
6.6 8 1 9 9 3 3 5 5 7 9
6
.
6
8
1
9
9
3
3
5
5
7
9
20
Expression 21: "D" Subscript, 1 , Baseline equals "C" Subscript, 1 , Baseline minus "Z"
D
1
=
C
1
−
Z
equals
=
4.3 6 0 6 9 0 4 0 3 2 2
4
.
3
6
0
6
9
0
4
0
3
2
2
21
Expression 22: "D" Subscript, 2 , Baseline equals "O" Subscript, 2 , Baseline
D
2
=
O
2
equals
=
0
0
22
Expression 23: "E" Subscript, 1 , Baseline equals "R" cosine "B" Subscript, "O" "E" , Baseline
E
1
=
R
c
o
s
B
O
E
equals
=
4.3 6 0 6 9 0 4 0 3 2 2
4
.
3
6
0
6
9
0
4
0
3
2
2
23
Expression 24: "E" Subscript, 2 , Baseline equals "R" sine "B" Subscript, "O" "E" , Baseline
E
2
=
R
s
i
n
B
O
E
equals
=
7.8 7 3 0 1 5 8 9 0 1 9
7
.
8
7
3
0
1
5
8
9
0
1
9
24
Expression 25: "F" Subscript, 1 , Baseline equals "E" Subscript, 1 , Baseline plus StartFraction, "X" Over "R" , EndFraction left parenthesis, negative "E" Subscript, 1 , Baseline , right parenthesis
F
1
=
E
1
+
X
R
−
E
1
equals
=
1.0 2 3 7 1 8 9 5 1 8 8
1
.
0
2
3
7
1
8
9
5
1
8
8
25
Expression 26: "F" Subscript, 2 , Baseline equals "E" Subscript, 2 , Baseline plus StartFraction, "X" Over "R" , EndFraction left parenthesis, negative "E" Subscript, 2 , Baseline , right parenthesis
F
2
=
E
2
+
X
R
−
E
2
equals
=
1.8 4 8 2 7 5 1 1 9 3
1
.
8
4
8
2
7
5
1
1
9
3
26
Graphs
Graphs
Hide this folder from students.
27
Expression 28: "y" less than 25
y
<
2
5
28
Expression 29: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis
R
c
o
s
t
,
R
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 180
1
8
0
29
Expression 30: polygon left parenthesis, "A" , "B" , "C" , "D" , "E" , "F" , "D" , "F" , "O" , right parenthesis
p
o
l
y
g
o
n
A
,
B
,
C
,
D
,
E
,
F
,
D
,
F
,
O
30
Points
Points
Hide this folder from students.
31
49
powered by
powered by
O
A
B
C
E
F
D
X
Y
(2)
(1)
90
X / Y = ?
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy